20 research outputs found

    Clustering Human Mobility with Multiple Spaces

    Full text link
    Human mobility clustering is an important problem for understanding human mobility behaviors (e.g., work and school commutes). Existing methods typically contain two steps: choosing or learning a mobility representation and applying a clustering algorithm to the representation. However, these methods rely on strict visiting orders in trajectories and cannot take advantage of multiple types of mobility representations. This paper proposes a novel mobility clustering method for mobility behavior detection. First, the proposed method contains a permutation-equivalent operation to handle sub-trajectories that might have different visiting orders but similar impacts on mobility behaviors. Second, the proposed method utilizes a variational autoencoder architecture to simultaneously perform clustering in both latent and original spaces. Also, in order to handle the bias of a single latent space, our clustering assignment prediction considers multiple learned latent spaces at different epochs. This way, the proposed method produces accurate results and can provide reliability estimates of each trajectory's cluster assignment. The experiment shows that the proposed method outperformed state-of-the-art methods in mobility behavior detection from trajectories with better accuracy and more interpretability

    On the Effectiveness of Out-of-Distribution Data in Self-Supervised Long-Tail Learning

    Full text link
    Though Self-supervised learning (SSL) has been widely studied as a promising technique for representation learning, it doesn't generalize well on long-tailed datasets due to the majority classes dominating the feature space. Recent work shows that the long-tailed learning performance could be boosted by sampling extra in-domain (ID) data for self-supervised training, however, large-scale ID data which can rebalance the minority classes are expensive to collect. In this paper, we propose an alternative but easy-to-use and effective solution, Contrastive with Out-of-distribution (OOD) data for Long-Tail learning (COLT), which can effectively exploit OOD data to dynamically re-balance the feature space. We empirically identify the counter-intuitive usefulness of OOD samples in SSL long-tailed learning and principally design a novel SSL method. Concretely, we first localize the `head' and `tail' samples by assigning a tailness score to each OOD sample based on its neighborhoods in the feature space. Then, we propose an online OOD sampling strategy to dynamically re-balance the feature space. Finally, we enforce the model to be capable of distinguishing ID and OOD samples by a distribution-level supervised contrastive loss. Extensive experiments are conducted on various datasets and several state-of-the-art SSL frameworks to verify the effectiveness of the proposed method. The results show that our method significantly improves the performance of SSL on long-tailed datasets by a large margin, and even outperforms previous work which uses external ID data. Our code is available at https://github.com/JianhongBai/COLT
    corecore